Table III

Parameter	Table III										
	Structural Parameters Determined from q_{u} / q_{0} Vialues ${ }^{\text {a }}$										Final Results with Limits of Acceptability
	Q2	F_{3}	FK_{3}	K_{3}	$\mathrm{KLz}^{\text {Mo }}$	del $\overline{\mathrm{K} \mathrm{Q}_{3}}$	EF_{4}	K:	EF_{3}	Qs	Result
$\mathrm{C}-\mathrm{F}$	1.346	1.334	1.338	1.343	1.339	1.343	1.333	1.337	1.333	1.342	1.34 ± 0.02
$\mathrm{C}-\mathrm{C}$	1.558	1.505	1.509	1.515	1.531	1.535	1.483	1.508	1.483	1.554	$1.52 \pm .05$
$\mathrm{C}-\mathrm{O}$	1.376	1.404	1.408	1.414	1402	1.414	1.443	1.447	1.408	1.413	$1.41 \pm .05$
$\angle \mathrm{FCF}$	108.5°	108.5°	$108.5{ }^{\circ}$	$108.5{ }^{\circ}$	108.5°	$108.5{ }^{\circ}$	108.5°	108.5°	108.5°	108.5°	$108.5 \pm 1.5^{\circ}$
$\angle \mathrm{CCO}$	107°	113°	111.5°	110°	110°	108.5°	111.5°	110°	113°	107°	$110 \pm 4^{\circ}$

" All values for interatomic distances are in Angström units.
determined by this investigation are also included in this table.

Discussion of Results

An electron diffraction investigation ${ }^{2}$ of $\mathrm{CH}_{8}-$ $\mathrm{CH}_{2} \mathrm{OH}$ gave $\mathrm{C}-\mathrm{C}=1.55 \pm 0.02 \AA ., \mathrm{C}-\mathrm{O}=1.43 \pm$ $0.02 \AA$., and $\angle \mathrm{CCO}=110 \pm 3^{\circ}$; these results are in close agreement with the values of 1.54 and $1.43 \AA$. for the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ distances, respectively, obtained in an electron diffraction study ${ }^{2}$ of $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{OH}$. Within the limits of accuracy of this investigation, the CCO angle is the same in $\mathrm{CF}_{3}-$ $\mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$. Unfortunately, the uncertainties of the data do not permit an entirely valid comparison of the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ distances in $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ with these distances in ethanol and ethylene chlorohydrin, but the results of this investigation indicate that these distances are probably shorter in $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$. Further, it appears that the $\mathrm{C}-\mathrm{C}$ bond lengths in $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CF}_{3} \mathrm{CF}_{3}$ and $\mathrm{CH}_{3} \mathrm{CF}_{3}$ are very nearly the same (see Introduction).

The values for the $\mathrm{C}-\mathrm{F}$ bond distance and the FCF angle ($1.34 \pm 0.02 \AA$. and $108.5 \pm 1.5^{\circ}$, respectively) obtained in this investigation do not differ significantly from the values reported for other molecules containing the CF_{3} group. A recent electron diffraction study of CHF_{3} employing
the rotating sector ${ }^{12}$ gave $\mathrm{C}-\mathrm{F}=1.334 \pm 0.005 \AA$. and $\angle \mathrm{FCF}=108^{\circ} 30^{\prime} \pm 30^{\prime}$; these values are in close agreement with the microwave results ${ }^{18}$ oi $1.332 \AA$. and $108^{\circ} 48^{\prime}$, respectively. The studies in this Laboratory of $\mathrm{CF}_{3} \mathrm{CF}_{3}{ }^{3}$ and $\mathrm{CH}_{3} \mathrm{CF}_{3}{ }^{4}$ yielded $\mathrm{C}-\mathrm{F}=1.330 \pm 0.015 \AA$. and $\angle \mathrm{FCF}=108.5 \pm$ 1.5° for $\mathrm{CF}_{3} \mathrm{CF}_{3}, \mathrm{C}-\mathrm{F}=1.33 \pm 0.02 \AA$. and $\angle \mathrm{FCF}$ $=108.5 \pm 1.5^{\circ}$ for $\mathrm{CH}_{3} \mathrm{CF}_{3}$. A determination of the structure of $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CH}^{11}$ by a combination of the electron diffraction and microwave methods gave $\mathrm{C}-\mathrm{F}=1.33 \overline{5} \pm 0.010 \AA$. and $\angle \mathrm{FCF}=107.5$ $\pm 1^{\circ}$. FCF angles less than tetrahedral have also been reported for $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CCF}_{3}{ }^{14}$ and $\mathrm{CF}_{3} \mathrm{CN}^{15}$ It is to be noted that the C-F distance is nearly the same in all these cases.

Acknowledgments.-The authors wish to thank Professor Yearian for the use of his electron diffraction apparatus. They are also grateful to the Purdue Research Foundation for financial support of this work.
Lafayette, Indiava
(12) L. O. Brockway, private communication.
(13) S. N. Ghosh, R. Trambarulo and W. Gordy, J. Chem. Phys, 20, 605 (1952).
(14) W. F. Sheeban and V. Schomaker, This Journal, 74, 4468 (1952).
(15) M. D. Danford and R. I. I.ivingston, ibid., 77, $28+4$ (1955).
[Contribution No. 2082, from the Gates and Crellin Laboratories of Chemistry, California Institute of Technology]

The Molecular Structure of Cyclobutene, $\mathrm{C}_{4} \mathrm{H}_{6}$

By Elihu Goldish, Kenneth Hedberg and Verner Schomaker
Received February 6, 1956

Abstract

The molecular structure of cyclobutene has been studied by electron diffraction in the gas phase. The bond distance and bond angle results for a molecule of $\mathrm{C}_{2 \mathrm{v}}$ symmetry are $\mathrm{C}-\mathrm{C}_{\text {sve }}=1.537 \pm 0.010 \AA$, $\mathrm{C}=\mathrm{C}=1.325 \pm 0.04 \AA$. and $\angle \mathrm{C}=\mathrm{C}-\mathrm{C}=94.0 \pm 0.8^{\circ}$; the lengths of the two types of single bonds probably do not differ by more than $0.06 \AA$. The bond lengths are discussed in connection with the possible effects of cross-ring repulsion, hyperconjugation, and angle stresses at the carbon atoms.

A considerable amount of structural evidence ${ }^{1}$ indicates that carbon-carbon single bonds in threemembered rings are shorter, and in four-membered rings are longer than the standard distance, $1.54 \AA$. An explanation of the bond shortenings is suggested by Coulson and Moffitt's ${ }^{2}$ treatment of bond angle strain, and Dunitz and Schomaker ${ }^{1}$ have related the lengthenings to a plausible repulsion be-

[^0]tween non-bonded carbon atoms. Cyclobutene, with its four-membered ring, seemed to us to be a worthwhile subject for study in connection with these distance effects.

The Structure Determination.-Samples of cyclobutene were kindly prepared for us by Drs. E. R. Buchman, J. C. Conly and W. Neville, by reduction of 1,2 -dibromocyclobutane with zinc dust. ${ }^{3}$ Electron diffraction photographs were made both in the old apparatus ${ }^{4}$ and later in a newly con-
(3) J. C. Conly, Thesis, California Institute of Technologs, 19:0n.
(4) 1. O. Brockway, Re\%. Modern Phys., 8, 231 (1936).
structed apparatus, and were interpreted ${ }^{5}$ by two of us independently. The work had been largely completed using the older data, but the much better newer plates enabled us to refine our results significantly.

Theoretical intensity curves were calculated over the shape parameter ranges $0.837 \leqslant \mathrm{C}=\mathrm{C} / \mathrm{C}-\mathrm{C} \leqslant$ $0.889,0.673 \leqslant \mathrm{C}-\mathrm{H}_{\text {ave }} / \mathrm{C}-\mathrm{C}_{\text {ave }} \leqslant 0.752$ and $-0.08 \leqslant \mathrm{C}_{1}-\mathrm{C}_{4}-\mathrm{C}_{1}-\mathrm{C}_{2} \leqslant+0.08 \AA$. (see cut) for a

$\mathrm{H}_{2} \mathrm{C}-\mathrm{CH}_{2}$
$\mathrm{HC} \stackrel{1}{=}=\stackrel{2!}{\mathrm{C}} \mathrm{H}$

molecule of $\mathrm{C}_{2 \mathrm{~V}}$ symmetry, assuming $\mathrm{C}_{2} \mathrm{v}$ local symmetry for C_{1} and $\mathrm{C}_{2}, \angle \mathrm{C}=\mathrm{C}-\mathrm{H}=125^{1 / 4}+$ $1 / 2\left(125^{1 / 4}-\angle \mathrm{C}_{2}=\mathrm{C}-\mathrm{C}\right)$ degrees, and, for most of the calculations, $\angle \mathrm{H}-\mathrm{C}-\mathrm{H}=109^{1 / 2^{\circ}}{ }^{\circ}$. In the vibration factors $\exp \left(-b_{\mathrm{ij}} g^{2}\right), b_{\mathrm{ij}}$ was taken as 0.00016 for $\mathrm{C}-\mathrm{H}, 0.00030$ for C . . . H, zero for $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}=\mathrm{C}$, and, usually, for best agreement beyond $g \sim 120$, between 0.00005 and 0.00010 for $\mathrm{C} \ldots \mathrm{C}$. All terms except H . . . H were included and the effective value 1.25 was used for Z_{H}. As the work proceeded it became clear that a determination of the $\mathrm{C}-\mathrm{H}_{\text {ave }}$ distance would have error limits of about $\pm 0.06 \AA$. We, therefore, made the additional very reasonable assumption $\mathrm{C}-\mathrm{H}_{\text {ave }}=$ $1.093 \pm 0.015 \AA$. in order to simplify and make more precise the determination of the remaining parameters.

The effects of small variations of the several parameters are shown by the theoretical intensity curves in Fig. 1, all of which are in acceptable agreement with observation. The usual comparisons (Table I presents some of the quantitative

TAble I
Diffraction Data for Cyclobutene, Model E

No.	$\underset{\text { gax. }}{\substack{\text { Max. }}}$	$q / q_{\text {obsd }}$	No.	$\underset{q_{\text {obsd }}}{\operatorname{Min}}$	$q / q_{\text {obs }}$ d
1	11.72	(1.126)	1	8.37	(1.039)
2	19.57	(1.022)	2	15.63	(0.985)
3	29.33	1.019	3	24.76	1.010
4	41.26	0.994	4	35.14	0.996
5	50.77	(1.024)	5	46.48	(1.033)
6	57.95	(0.982)	6	54.04	(1.007)
7	68.40	1.011	7	62.92	0.983
8	79.46	1.013	8	73.94	1.009
9	96.54	(0.993)	9	84.97	(1.030)
10	107.84	. 996	10	101.91	1.005
11	121.34	(.989)	11	112.87	1.011
12	136.04	(.992)	12	128.20	0.975

av. 11 features 1.004
av. deviation 0.007
For best model: $\mathrm{C}-\mathrm{C}_{\mathrm{ave}}=1.53 \times 1.0045=1.537 \AA$.
comparisons) led to the following parameter values and limits of error: $\mathrm{C}=\mathrm{C} / \mathrm{C}-\mathrm{C}_{\text {ave }}=0.862+$ $0.018-0.024,\left|\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{3}-\mathrm{C}_{4}\right| \leqslant 0.08 \AA ., \mathrm{C}-\mathrm{C}_{\text {ave }}=$
(5) See K. Hedberg and A. J. Stosick. This Journal, 74, 954 (1952), for details of the method.
(6) No doubt $\angle \mathrm{H}-\mathrm{C}-\mathrm{H}$ is somewhat greater than tetrahedral (cf. ref. 1); however, we have found that variations as large as 10° produce only very small changes in the intensity curves. The assumption on $\angle \mathrm{C}=\mathrm{C}-\mathrm{H}$ is presumably better.

Fig. 1.-Electron diffraction curves for cyclobutene. The broad and narrow vertical bars represent, respectively, carbon-carbon and carbon-hydrogen interactions for the best model. The theoretical intensity curves are for the following parameter values.

	C-Cave,	$\mathrm{C}=\mathrm{C}, \AA$	$\begin{aligned} & \mathrm{C}_{2}-\mathrm{C}_{3}- \\ & \mathrm{C}_{3}-\mathrm{C}_{4}, \AA . \end{aligned}$	C-Have,	$\begin{gathered} a(q) \mathrm{C} \ldots \mathrm{C} \times \\ 10^{4}, \AA^{-2} \end{gathered}$
A	1.53	1.30	0	1.09	0
B	1.53	1.30	0	1.09	0.5
C	1.53	1.33	0	1.09	0.5
D	1.53	1.30	0	1.06	0.5
E	1.53	1.30	0.04	1.09	0.5
F	1.52	1.30	0.04	1.09	0.5

$1.537 \pm 0.010 \AA ., \mathrm{C}=\mathrm{C}=1.325 \pm 0.046 \AA$. and $\angle \mathrm{C}=\mathrm{C}-\mathrm{C}=94.0^{\circ} \pm 0.8^{\circ}$. For any difference $\left|\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{3}-\mathrm{C}_{4}\right|$ less than $0.06 \AA$. the curves are about equally satisfactory.
Discussion.-Although the average carbon-carbon bond length in cyclobutane is very close to the standard length of $1.54 \AA .$, it is substantially shorter than the abnormally long values found for other four-membered rings (all saturated), presumably because of the presence of the double bond. Just as for cyclobutane, a cross-ring repulsion ${ }^{1}$ in excess of the bend-bond effect ${ }^{2}$ probably exists, but it is here cancelled out by hyperconjugation shortening and the possibly shorter covalent radius of the trigonally bonded carbon atom ${ }^{7}$ which amount to about $0.04 \AA$. for $\mathrm{C}-\mathrm{C}$ adjacent to $\mathrm{C}=\mathrm{C}$ in propene ($1.49 \AA .{ }^{8}$), isobutene $\left(1.50 \AA .^{8}\right)$ and cis-butene ($1.51 \AA .{ }^{9}$). In addition, the angle stress at $\angle \mathrm{C}-\mathrm{C}=\mathrm{C}$ is most likely greater than at $\angle \mathrm{C}-\mathrm{C}-\mathrm{C}$, so as to shorten the double

[^1]| Table II | | | |
| :---: | :---: | :---: | :---: |
| Carbon-Carbon Bond Lengths in Cyclobutene | | | |
| | $\mathrm{C}_{1}-\mathrm{C}_{6}$ | Cr - C | $\mathrm{C}_{1}=\mathrm{C}_{2}$ |
| Standard length, \AA. | 1.540 | 1.540 | $1.330^{\text {a }}$ |
| Estimated increments: | | | |
| Bent-bond effect | $-0.012^{\text {b }}$ | $-0.012^{\text {b }}$ | -0.006^{c} |
| Cross-ring repulsion | $+.033^{\text {d }}$ | $+.033^{\text {d }}$ | $+.016^{\text {c }}$ |
| Hyperconjugation ${ }^{\text {a }}$ | $-.040^{a}$ | , | 0 |
| Differential angle stress ${ }^{f}$ | 0 | $+.010$ | $-.005$ |
| Resultant sums | 1.521 | 1.571 | 1.335 |
| Single bond average | 1.538 | | |
| Obsd. lengths | . 537 ± 0.010 | | 325 ± 0.046 |

${ }^{a}$ From propene, isobutene and cis-butene (ref. 8 and 9). ${ }^{b}$ For an average angle strain of 27°, according to the CopleyBernstein chord and arc interpretation (cf. ref. 1). © Half the corresponding single-bond values because of the difference in stretching force constant. ${ }^{i}$ The observed lengthening in cyclobutene, corrected for an estimated bent-bond effect (ref. 1) of $-0.005 \AA$. ${ }^{\text {e Possible differences in higher-order hyperconjugation and hybridization (ref. 7) are here neglected. }}$ ${ }^{1}$ For bending force constants (defined by $F=k l \Delta \nu$) of 0.33×10^{0} dyne cm^{-1} rad. ${ }^{-1}$ (propane: D. M. Gates, J. Chem. Phys., 17,393 (1949)) and 0.51×10^{5} dyne cm. ${ }^{-1}$ rad. ${ }^{-1}$ (propene: E. B. Wilson, Jr., ibid., 9, 319 (1941)), angle strains of $24^{\circ}(\mathrm{C}-\mathrm{C}-\mathrm{C})$ and $31^{\circ}(\mathrm{C}=\mathrm{C}-\mathrm{C})$ and stretching force constants of 4.7×10^{5} dyne $\mathrm{cm} .^{-1}(\mathrm{C}-\mathrm{C})$ and $9.5 \times 10^{5} \mathrm{dyne} \mathrm{cm} .^{-1}$ ($\mathrm{C}=\mathrm{C}$). The resulting Δ l's are here multiplied by ${ }^{1 / 6}$ since, following the discussion of ref. 2 , only roughly this fraction of the bending constant is not to be ascribed to direct interaction between the adjacent non-bonded atoms.
bond, leave the adjacent single bonds essentially unaffected, and lengthen the opposite single bond. As is slown in greater detail in Table II, these
considerations lead to a reasonable accounting for the observed distances.
Pasadena, California

[^0]: (1) See J, D. Dunitz and V. Schomaker, J. Chem. Phys., 20, 1703 (1952).
 (2) C. A. Coulson and W. E. Moffitt, ibid, 15, 15: (194I); Phil. Mag., 40, 7 th series, 1 (1949).

[^1]: (7) C. A. Coulson, Victor Henri Commemorative Volume, "Contribution à l'étude de la structure Moléculaire," Desoer, Liege, 1948, p. 15.
 (8) J. P. McHugh and V. Schomaker, Abstracts, American Crystallographic Association Meeting, Pasadena, California, June, 1955, p. 21.
 (9) J. P. McHugh and V. Schomaker, private communication.

